skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "J. Hendrickx, A. Olshevsky"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. We consider the problem of recovering a rank-one matrix when a perturbed subset of its entries is revealed. We propose a method based on least squares in the log-space and show its performance matches the lower bounds that we derive for this problem in the small-perturbation regime, which are related to the spectral gap of a graph representing the revealed entries. Unfortunately, we show that for larger disturbances, potentially exponentially growing errors are unavoidable for any consistent recovery method. We then propose a second algorithm relying on encoding the matrix factorization in the stationary distribution of a certain Markov chain. We show that, under the stronger assumption of known upper and lower bounds on the entries of the true matrix, this second method does not have exponential error growth for large disturbances. Both algorithms can be implemented in nearly linear time. 
    more » « less